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Abstract 

Financial institutions increasingly rely on Cloud Service Providers (CSPs). 
Cloud services can increase resilience of individual firms. However, given the 
high concentration of CSPs, a single CSP outage could generate 
simultaneous firm-level outages, posing systemic risk. Our model examines 
this possibility. We calibrate the model with operational risk data to simulate 
outages among CCP clearing members and show that CSPs need to be 
significantly more resilient than firms to improve the safety of the financial 
system. In financial settings where only longer (multi-period) outages impose 
systemic costs, CSPs can best address systemic risk by strongly reducing 
incident resolution time, rather than incident frequency. Finally, we show that 
the use of an idealized back-up CSP successfully mitigates systemic risk from 
CSPs. Back-up requirements may need to be imposed by policymakers 
however, as the systemic risk is an externality to individual firms. 

 

JEL Classifications: D62, D82, D85, G23 

Keywords: Operational risk, cloud service provider, systemic risk, concentration risk, central 
counterparty  

 

  

 
  The views expressed are those of the authors and do not necessarily reflect the views of the European Securities and Markets 

Authority. Any error or omissions are the responsibility of the authors. A summary of the findings of this paper was published 
in the ESMA Report on Trends, Risks and Vulnerabilities no. 2, 2021. The authors would like to thank Adrien Amzallag, Keith 
Bear, Richard Berner, Jon Danielsson, Claudia Guagliano, Leonardo Gambacorta, Vikram Haksar, Victor Herraez, Steffen 
Kern, Caroline Le Moign, Klaas Lenaerts, Maurizio Naldi, Christian Winkler and seminar participants at the BIS and IMF for 
discussions and feedback on earlier versions of the work. They are grateful to Yanis El Omari for help sourcing the data. 

  Trainee, Risk Analysis and Economics Department, European Securities and Markets Authority (ESMA), CS 80910, 201-203 
rue de Bercy, 75589 Paris Cedex 12, France. E-mail: carolina.asensio@esma.europa.eu. 

   Senior Economist, Risk Analysis and Economics Department, European Securities and Markets Authority (ESMA), CS 80910, 
201-203 rue de Bercy, 75589 Paris Cedex 12. E-mail: antoine.bouveret@esma.europa.eu. 

   Senior Risk Analysis Officer, Risk Analysis and Economics Department, European Securities and Markets Authority (ESMA), 
CS 80910, 201-203 rue de Bercy, 75589 Paris Cedex 12. E-mail: alexander.harris@esma.europa.eu. 

 



ESMA Working Paper No 2, 2022 4 

 

 
 

1 Introduction 

The use of cloud computing services by financial institutions has expanded over the last few 

years, as firms are increasingly outsourcing parts of their IT infrastructure (FSB, 2019). While 

migrating to the cloud provides a range of benefits to firms including scalability and flexibility, 

the high concentration of the CSP market can present risks to financial stability, especially from 

an operational risk perspective (Danielsson and Macrae, 2019). 

CSPs can increase the resilience of financial institutions as CSPs invest heavily in security and 

spread their infrastructures across geographical areas. However, the high degree of 

concentration in the market implies that if a CSP were to suffer a major outage, a large number 

of clients would face operational challenges. 

This paper analyses the impact of migrating to the cloud on the stability of the financial system. 

It shows the importance of trade-offs between higher individual resilience for firms using CSPs 

and higher risk of tail events, where multiple firms suffer an outage at the same time. 

First, in a stylized theoretical framework, we characterize average outage time for firms in terms 

of incident frequency and average incident resolution time (Proposition 1). We show that while 

the use of CSPs typically improves the resilience of financial institutions at individual level, 

concentration risk can lead to systemic risk due to a higher probability of simultaneous outages 

(Proposition 2). For systemic risk to be lower, CSPs need to be substantially more resilient than 

individual firms (lower frequency and/or lower duration of outages) to compensate for 

concentration risk. Using our model, we also examine how that the use of a second CSP or an 

operationally separate zone in a single CSP as back-up (‘multi-cloud’) for a given core financial 

activity mitigates risks to financial stability.1 Successful mitigation is possible if CSPs do not 

share common vulnerabilities. However, there exists an equilibrium in which firms outsource to 

the cloud but do not back up (Proposition 3), suggesting that policy intervention may be 

warranted. 

Second, we use outage data from financial institutions and CSPs to estimate the likelihood of 

systemic events in a network of clearing members. Using a small sample, we find that CSPs 

have less frequent outages than clearing members (proxied by CCP outage data) but of longer 

duration. In that set-up, outsourcing to CSPs creates systemic risk due by increasing the 

likelihood of simultaneous outages. 

Overall, our results provide a framework to analyse the benefits and risks related to third-party 

outsourcing, which can be used by policymakers and regulators in the context of ongoing policy 

work on CSPs (FSB, 2020). We also shed light on what kind of data on outages is needed to 

estimate risks and costs related to third-party outsourcing. 

This paper complements recent work on risks related to CSPs. Lloyd’s uses a scenario analysis 

to quantify the losses related to an outage of CSPs at global level and more specially for the 

largest US companies (Lloyd’s, 2017, 2018). Using a Value-at-Risk approach, (Naldi, 2017) 

provides a measure of potential losses per CSP, by calibrating frequency and severity 

distributions on outage data. (Aldasoro et al., 2020) find that a higher dependence on CSPs, 

measured by investment in cloud services at country-level, is associated with lower cyber 

losses, yet the authors note that since they only have small losses in their database, this result 

might not apply to more extreme events. To our knowledge, our paper is first to model the 

marginal systemic risk that arises from cloud-based outsourcing of critical financial services, 

compared with a no-cloud baseline. Our simple framework calculates this risk analytically, taking 

 
1 We model an idealised case of back-up whereby cloud services are fully and instantly portable between providers or availability 
zones. As we discuss in section 4, these conditions may not hold in practice. 
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mean duration and frequency of outages as inputs. We also show how back-up of critical 

financial services via multi-cloud may be under-provided in equilibrium compared to the social 

optimum.  

The remainder of the paper is as follows: Section 1 provides an overview of the use of CSPs by 

financial institutions and some of the risks that can arise. Section 2 outlines a stylized model to 

assess risks related to the use of CSPs. Section 3 applies the model to a CCP network and 

Section 4 concludes. 

 

2 Motivation 

2.1 Cloud service providers and use by financial institutions 

Cloud computing is an innovation that allows for the use of an online network (‘the cloud’) of 

hosting processors to increase the scale and flexibility of computing capacity (FSB, 2019).  

There are three main service models for cloud computing: 

• Infrastructure as a Service (IaaS): Provides computing resources and IT infrastructure 

to clients, on which they can deploy and run arbitrary software.  

• Platform as a Service (PaaS): Provides clients with an on-demand environment for 

developing, testing, delivering and managing software online.  

• Software as a Service (SaaS): Clients use the provider’s apps on a cloud infrastructure, 

which are accessible from various devices through either a client or program interface. 

When it comes to how these cloud services are deployed, there are three deployment models: 

• Public Cloud: The cloud infrastructure is provided for open use by the public over the 

internet and exists on the premises of the cloud provider. Some common uses of public 

cloud are storage, testing and development environments, and web-based email. 

• Private Cloud: The service is provisioned for exclusive use by a single organization, with 

all services kept on a private network. This deployment eases customization to meet IT 

requirements or to guarantee an enhanced control over the outsourced services. 

• Hybrid Cloud: Combination of private and public cloud infrastructures that remain unique 

units but are linked by proprietary technology enabling data and app portability. 

Given these possible deployment models, firms are starting to rely on a ‘multi-cloud’ approach. 

In this context, they outsource many services (through both public and/or private deployments) 

to more than one CSP to reduce dependence on a single provider.  

While cloud computing is still a topic of research, it has become key to the digital economy. The 

use of cloud has significantly increased in the last few years (see Chart 1), a trend which has 

been further accelerated by the pandemic as firms have had to set up remote working facilities. 

Migrating to the cloud, once seen as an option, is now viewed by many businesses as inevitable, 

and more firms in the financial sector are increasingly outsourcing or intending to outsource to 

CSPs in the near future to remain competitive. According to McKinsey’s results in a poll of 

banking and securities organizations, while 81% of respondents claimed to currently hold less 

than 25% of their environments in the public cloud, 54% said they were targeting to raise this 

amount to over 50% in the next five years (McKinsey, 2021).  
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Chart 1  
Firms increasingly purchasing cloud services 

 
 

 

Note: Percentage of businesses purchasing cloud computing 

services by year in 22 EU countries. Countries included: AT, 

BE, CZ, DE, DK, EE, ES, FI, FR, GR, HU, IE, IT, LV, LT, LU, 

NL, PL, PT, SI, SK, SE. Firms across the economy with at 

least 10 employees were surveyed. Sources: OECD, ESMA. 

There are many benefits associated with the use of cloud computing in the financial system. 

Cloud can help firms cut costs related to the development and maintenance of IT infrastructures 

that keep up with the pace of innovation, as financial services firms seldom have the scale and 

capacity to set up in-house such sophisticated and highly automated infrastructures. This can 

enable financial institutions to direct internal resources that were previously focused on 

administrating IT infrastructure towards innovating and delivering new and improved products 

and services. Cloud computing can also help firms expedite and scale processes, increase 

flexibility and operational efficiency, as well as enhance the ability to identify business 

opportunities and revenue streams. Another key benefit related to cloud outsourcing is risk 

mitigation through enhanced information security and disaster recovery plans, given that CSPs 

can provide efficient solutions to mitigate traditional technology risks, such as capacity, 

redundancy, and resiliency concerns. Moreover, cloud migration plays a huge role as an enabler 

of the use of other innovative technologies such as artificial intelligence, big data and distributed 

ledger technology, allowing for higher automation.  

2.2 Potential risks related to the use of CSPs 

Cloud outsourcing can offer several benefits, but it can also raise challenges at firm level in 

terms of governance, data protection and information security. Operational risks result from 

inadequate or failed internal processes, people, and systems, or from external events, and they 

may impact financial institutions in different ways. For instance, data losses could happen due 

to failures, deletion or disasters that occur at CSPs. For example, in February 2012, customers 

were unable to access Azure hosted services due to a ‘leap day bug’ related to 29 February. In 

August 2015, a series of lightning strikes to the local power grid caused failures in a Google 

data centre in Belgium (Lloyd’s, 2018).  

These risks can also arise when CSPs outsource some of their functions to other third parties, 

or ‘fourth parties’. Another important type of operational risk to consider is cyber risk; as massive 

amounts of data are stored in cloud ecosystems, these become very attractive targets for cyber 

criminals. It is important to note that all these risks can be mitigated by financial institutions in 
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the due diligence process when selecting an adequate CSP, when drafting the corresponding 

service level agreements (SLA) and by adhering to regulations and operational resilience 

principles. 

Another important risk embedded in all new technologies is ‘vendor lock-in’, where a financial 

institution relies strongly on the services of one CSP, for instance due to use of software 

technology only supported by one CSP. This could lead to severe difficulties when migrating to 

another provider. Depending on the level of dependency and on the CSP’s commitments, it may 

even lead to a catastrophic business failure should the cloud provider go bankrupt (or decide 

for business reasons to stop providing cloud services, etc). 

In addition, cloud computing can bring risks at the level of the wider financial system. An 

increasing concern in the regulatory and supervisory landscape relating to outsourcing and 

third-party risk management is the possibility of systemic risk arising from the concentration in 

the provision of cloud services, which becomes higher as the number of financial institutions 

that outsource critical or important functions to CSPs increases (FSB, 2020). Given the limited 

number of CSPs that can meet the high standards of resiliency requirements that financial 

institutions demand, it is plausible that a sufficiently large number of them become dependent 

on a small number of CSPs. This implies that operational incidents may become more correlated 

among those financial institutions that outsource critical or important functions to a common 

CSP. Even though cloud computing may yield increased data security and operational resilience 

at firm level, it could also increase the risk of simultaneous incidents among several firms and 

lead to potential negative outcomes for financial stability (Danielsson and Macrae, 2019; FSB, 

2019). Concentration risk in this context is thus a form of systemic risk.  

Synergy Research Group estimated that the largest three CSPs made up for 60% of market 

share for the IaaS market. A major disruption, outage, or failure at one of these CSPs, even if 

unlikely, could create potential concentration risk in terms of a single point of failure, with likely 

severe consequences for financial stability. 

Chart 2  
Cloud outsourcing is a concentrated market 

 
 

Note: Global market share of cloud infrastructure services in 

Q2 2020, by vendor. Source: Synergy Research Group 

Although operational, vendor lock-in and financial stability are the most obvious risks, there are 

several other risks related to cloud outsourcing that are important to take into consideration 

when assessing a potential migration to the cloud. For an extensive review of other risks related 
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to cloud computing refer to the cloud risk assessment performed by the European Network and 

Information Security Agency (ENISA, 2012).  

3 Systemic risks related to CSPs: a model 

3.1 Literature review 

The increasing use of CSPs has been accompanied by an emerging literature on the risks and 

potential impact of CSP outages.  

A series of studies estimate the costs related to outages of cloud providers. Using scenario 

analysis, Lloyd’s estimates global losses ranging from USD 4bn to USD 53bn for an outage 

duration of between 0.5 and 3 days (Lloyd’s, 2017), and losses for the largest US firms at around 

USD 10bn for an outage of the top three CSPs lasting between 3 and 6 days (Lloyd’s, 2018).  

Using a Value-at-Risk approach, Naldi (2017) provides a measure of potential losses for CSPs, 

based on outage data and estimated loss per minute. The author models outage frequency 

using a Poisson distribution and outage duration using a Generalized Pareto Distribution, 

frequently used to model fat tails in operational risk (Bouveret, 2019). Our model builds on this 

approach, distinguishing between outage frequency and duration. For tractability, and to prevent 

time-consistency (i.e. time-overlapping outages for a single area of a firm’s operations), we do 

so in a two-state Markov chain framework. This allows us to analyse alternative technology-

based approaches to mitigating systemic risk: preventing outages versus quickly resolving 

them. 

A related strand of the literature examines the impact of using CSPs on the cost of cyber events 

for individual firms. Using a large dataset of cyber losses, Aldasoro et al (2020) find that a higher 

dependence on CSPs, measured by investment in cloud services at country-level, is associated 

with lower costs. However, the authors note that this result might not apply to more extreme 

events since they only have small losses in their database. Harmon, Vytelingum and Babaie-

Harmon (2020) put forward an agent-based model with banks and CSPs in a settlement context. 

CSPs can face outages, the duration of which is assumed to follow an exponential distribution. 

When a CSP suffers an outage, banks using the CSP cannot proceed with settlement, creating 

credit risk. The authors estimate the impact on other banks in the network, using contagion 

measures based on market-based data for banks (Demirer et al, 2018). 

3.2 Overview of the model and scenario 1 (no-cloud baseline) 

We now introduce a model to investigate the conditions under which outsourcing to the cloud 

by financial sector firms may generate systemic operational risk. The model considers a set of 

financial sector firms in three main alternative scenarios:  

1. A setting where no cloud outsourcing is available (the ‘no-cloud scenario’); 

2. A setting where each financial sector firm outsources the time-critical IT service to one 

among several CSPs (the ‘cloud scenario’); and  

3. A setting where each financial sector firm outsources the time-critical IT service to a primary 

CSP and to a secondary provider (the ‘multi-cloud scenario’). 

In this section, we do not explicitly model firms’ decision as to whether to outsource to the cloud. 

Instead, we examine the risk implications of the first two scenarios. In section 4, we also 
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consider risks in scenario 3. Yet the model can readily be understood in a strategic context. 

Firms will have an incentive to move operations to the cloud – other things equal and neglecting 

frictional costs – if cloud outsourcing prevents incidents or improves their resolution speed. In 

Annex 1, we model this strategic decision formally. There we show that firms may not find it 

individually optimal to use a back-up cloud provider, even if the system would be more efficient 

if all firms were to back-up. In short, there is an externality that may warrant policy intervention. 

Throughout the model, the number of financial sector firms is denoted 𝑛 and the number of 

CSPs is denoted 𝑛𝑐𝑙𝑜𝑢𝑑. Unless otherwise stated, firms are indexed by 𝑖, operational incidents 

by 𝑗 and CSPs by 𝑘. Time is discrete: 𝑡 = 1,2,3, …  

At any given time 𝑡, firm 𝑖 is in one of two states: 𝜔𝑖(𝑡) = 0 (no outage) or 𝜔𝑖(𝑡) = 1 (outage 

occurs). We define 𝑚(𝑡) to be the total number of firms suffering an outage at time 𝑡, i.e.: 

𝑚(𝑡) = ∑ 𝜔𝑖(𝑡)

𝑛

𝑖=1

(1) 

Assumption 1: Firms’ states are independent. Transition probabilities between states are 

constant.  

Assumption 1 – particularly the independence of firms’ states – is important. In reality, firms’ 

outages may be correlated – for instance, if there is a natural disaster affecting data systems in 

a geographical region, or if a malicious attack targets several firms at once. The assumption 

contrasts with scenario 2 (detailed below), where all firms that have the same CSP suffer 

perfectly correlated outages. Independence can to some extent be justified by interpreting the 

model as a means to study the difference in systemic risk between scenarios 1 and 2, 

abstracting away from those risk drivers that are common to both settings. For instance, to the 

extent the two scenarios face a common risk of a multi-firm malicious attack – which can be 

perpetrated directly against the firms or via the cloud – we can regard the effect as ‘cancelling 

out’ between the scenarios. However, the independence assumption clearly reduces baseline 

systemic risk in scenario 1, which therefore overstates the extent to which CSPs create 

additional systemic risk via concentration. 

The second part of Assumption 1, that transition probabilities are constant, implies that outages 

follow a Markov chain. Regardless of the system’s initial configuration, it has long-run steady 

state properties that we can study. For example, given the transition probabilities we can 

calculate the average amount of time a firm spends in outage, the average amount of time that 

two or more firms are in simultaneous outage, and the frequency that a firm suffers a multi-

period outage of given duration. 

Returning to the model specification, suppose that 𝜔𝑖(𝑡) = 0 at arbitrary time period 𝑡, i.e. the 

firm is not suffering an operational outage. The probability that the firm remains in that state at 

the next time period 𝑡 + 1 (i.e. that no outage occurs in 𝑡 + 1) is a constant probability 𝜆, known 

as the incident rate. The mean length of time the firm remains free of an outage is as follows:  

𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑢𝑡𝑎𝑔𝑒𝑠 =  
1

𝜆
(2) 

Now suppose instead that 𝜔𝑖(𝑡) = 1, i.e. an operational outage is underway at 𝑡. The probability 

that the outage is resolved in the next period 𝑡 + 1 is a constant probability 𝜇, known as the 

repair probability. We have that: 
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𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑛 𝑜𝑢𝑡𝑎𝑔𝑒 =  
1

𝜇
(3) 

Chart 3 illustrates the transition process for a single firm. 

Chart 3  
Markov chain governing outages over time for a single firm 

Note: Markov chain diagram for a single firm in the no-cloud 

baseline scenario, in which possible states of the firm are 

represented by coloured circles. 

 

The long-run average share of time that firm 𝑖 spends in the outage state is defined as τ: 

𝜏 ≔ lim
𝑡→∞

𝑃𝑟𝑜𝑏[𝜔𝑖(𝑡) = 1] (4) 

Proposition 1: Irrespective of the initial state, the long-run average share of time a firm 

spends in the outage stage is 𝝉 =
𝝀

𝝀+𝝁
  

Proposition 1 says that the share of time spent in the outage stage is increasing in the incident 

rate 𝜆 (measuring the probability of transitioning to an outage state) and is decreasing in the 

recovery rate 𝜇 (the probability of transitioning to a no-outage state).2 This result is intuitive: a 

higher incident rate leads to more frequent outages, while the greater the recovery rate, the 

quicker they are resolved. Henceforth we make the following assumption: 

Assumption 2: At 𝑡 = 0, each firm’s state is independently drawn, with 𝑃𝑟𝑜𝑏[𝜔𝑖(𝑡) = 1] = 𝜏 

Assumption 2 does not drive the main results of this paper but is a simple way to enable us to 

investigate the steady state properties of the system of firms. We assume that the system starts 

off in a state that is ‘natural’, in the sense that it is generated by the same probability distribution 

to which the system converges in the long run from any starting condition. A consequence of 

this assumption is that ex-ante, the probability distribution over firms’ states is the same at any 

 
2 Proof: Proposition 1 is a standard result for a finite, discrete Markov chain. Let 𝑽 denote the 2x1 steady state vector, whose first 
entry is the probability of no outage and whose second entry is the probability of outage. Let 𝑷 denote the 2x2 transition matrix 

(
1 − 𝜆 𝜆

𝜇 (1 − 𝜇)
), where element 𝑷𝑖𝑗 is the transition probability between states 𝑖 and 𝑗.  

It is straightforward to verify that 𝑽 = (1 − 𝜏, 𝜏), where 𝜏 =
𝜆

𝜆+𝜇
, by substitution into the steady state equation 𝑽𝑷 = 𝑽. 
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point in time. Assumption 2 is not critical; we could instead have specified arbitrary initial 

conditions and studied the long-run stochastic properties of the system, as the ex-ante 

probability of being in the outage state will converge to 𝜏.3  

Given that Assumption 2 specifies that firms’ initial states are identically and independently 

distributed (i.i.d), the expected number of firms suffering an outage at a given point in time is 

the product of the individual probabilities of each firm suffering an outage. Let 𝐸[. ] denote ex-

ante expectations under Assumption 2. It follows:  

 𝐸[𝑚(𝑡)] = 𝑛𝜏 (5) 

Equation (5) states that on average there are 𝑛𝜏 firms in an outage state at any point in time.  

More generally, the number of firms suffering an outage follows a binomial distribution.4 For 

example, the probability that at least two firms suffer an outage is given by 1 − 𝐵𝑛(1, 𝜏), where 

𝐵𝑛(𝑥, 𝑝) is the cumulative binomial distribution with 𝑛 trials, 𝑥 is the number of trials with a given 

outcome and 𝑝 is the probability of that outcome. Explicitly, 𝐵𝑛(1, 𝜏) = Prob[𝑚(𝑡) =

0] + Prob[𝑚(𝑡) = 1] = (1 − 𝜏)𝑛 + 𝜏(1 − 𝜏)𝑛−1, where 𝑚(𝑡) is a random variable measuring the 

number of firms in outage in arbitrary period 𝑡. Thus, the probability of at least 2 firms being in 

simultaneous outage in any time period is: 

Prob[𝑚(𝑡) ≥ 2] = 1 − (1 − 𝜏)𝑛 − 𝜏(1 − 𝜏)𝑛−1 (6) 

In general, we can consider the probability that there are at least 𝑆 > 0 firms in outage in a given 

time period. The approach of equation (6) can be used to calculate this probability: 

Prob[𝑚(𝑡) ≥ 𝑆] = 1 − Prob[𝑚(𝑡) ≤ 𝑆 − 1] = 1 − 𝐵𝑛(𝑆, 𝜏) = 1 − ∑ (
𝑛
𝑖

) 𝜏𝑖

𝑆−1

𝑖=0

 (1 − 𝜏𝑖)
𝑛−𝑖

(7) 

According to equation (7), the probability of a systemic event is decreasing in 𝑆, the threshold 

number of firms, and increasing in 𝜏, the average time a firm spends in outage. Both these 

dependencies are strongly intuitive, as 𝜏 =
𝜆

𝜆+𝜇
 (Proposition 1) implies that the probability of a 

systemic event is increasing in the incident rate 𝜆 and the repair rate 𝜇. 

3.3 Scenario 2: Systemic cloud outsourcing  

Suppose now that there are 𝑛′ ≥ 1 cloud providers, each of which serves an equal share of the 

𝑛 firms.5 Each cloud provider 𝑗 is in one of two states at any given time: 𝜔𝑗(𝑡) = 0 (no operational 

outage) or 𝜔𝑗(𝑡) = 1 (outage occurs).  

Firms only suffer outages via the cloud, and a cloud provider outage affects all the firms that 

use this cloud provider. More formally, if firms 𝑖 and j uses cloud provider 𝑘, then 𝜔𝑖(𝑡) = 1 if 

and only if 𝜔𝑗(𝑡) = 1. Each cloud provider is equally likely to suffer an outage, and hence each 

firm is equally likely to suffer an outage.6  

 
3 The convergence property is guaranteed by the specification of the system as an aperiodic, irreducible Markov chain.  
4 The binomial distribution arises from the fact that each firm’s state is identically and independently distributed (i.i.d) in period 1 
under Assumption 2. Ex-ante, firms’ states are i.i.d. in subsequent periods as the Markov process starts in its steady state under 
Assumption 2.  
5 We assume without loss of generality that 𝑛 is divisible by 𝑛𝑐𝑙𝑜𝑢𝑑 without remainder. 
6 This consequence holds for any assignment of firms such that each has a single provider. 
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It follows that at any given time, the number of firms in outage 𝑚(𝑡) equals the number of cloud 

providers in outage multiplied by the number of firms per cloud provider. More formally,  

𝑚(𝑡) =
𝑛

𝑛′
∑ 𝜔𝑗(𝑡)

𝑛′

𝑗=1

 (8) 

All cloud providers have the same incident rate, denoted 𝜆′, and same repair rate, denoted 𝜇′. 

Analogously with the no-cloud case, let us define the average time in outage for a firm using a 

cloud provider, denoted 𝜏′: 

𝜏′ ≔ lim
𝑡→∞

𝑃𝑟𝑜𝑏[𝜔𝑐𝑙𝑜𝑢𝑑(𝑡) = 1] (9) 

so that 

𝜏′ =
𝜆′

𝜆′ + 𝜇′
 (10) 

In Annex 1,  we assume that cloud providers have lower average outage time than do firms in 

the no-cloud scenario, i.e. 𝜏′ < 𝜏. Under this assumption we set out a simple equilibrium 

framework in which all firms find it optimal to outsource to the cloud.  

3.4 Comparing simultaneous outages between scenarios 

Recall that each cloud provider is assumed to service 
𝑛

𝑛′ firms. It follows that at least 𝑆 firms 

suffer an outage if at least 
𝑆∙𝑛′

𝑛
 providers are in simultaneous outage. 

Denote 𝑆′ ≔ 
𝑆∙𝑛′

𝑛
⌉ < 𝑆. The quantity 𝑆′ is the number of cloud providers in outage (rounded up 

to the nearest integer) that results in 𝑆 firms being in outage. 

The risk that at least 𝑆 firms suffer a simultaneous outage in any time period in scenario 2 is: 

Prob[𝑚(𝑡) ≥ 𝑆 | 𝐶𝑙𝑜𝑢𝑑] = 1 − 𝐵𝑛′(𝑆′, 𝜏′)                

where 𝐶𝑙𝑜𝑢𝑑 denotes the event that scenario 2 takes place, i.e. that firms outsource to the cloud. 

The cumulative binomial distribution 𝐵𝑛(. , . ) is decreasing in its first argument (i.e. the threshold 

number of trials) and increasing in its second argument (the probability that a trial is ‘successful’ 

– in the present context, that an outage occurs.)  

Define the odds ratio, 𝑅, as follows: 

𝑅 ≔
Prob[𝑚(𝑡) ≥ 𝑆′| 𝐶𝑙𝑜𝑢𝑑]

Prob[𝑚(𝑡) ≥ 𝑆| 𝑁𝑜 𝑐𝑙𝑜𝑢𝑑]
=

1 − 𝐵𝑛′(𝑆′, 𝜏′)

1 − 𝐵𝑛(𝑆, 𝜏)
                  (11) 

The odds ratio describes how many times more likely a simultaneous outage of at least 𝑆 firms 

is in scenario 2 than scenario 1. Intuitively, it describes how much more likely such an outage 

is made by concentration risk due to cloud outsourcing.  

The numerator of the right-hand side of equation (11) can be rewritten as 1 − 𝐵
𝑛∙

𝑛′

𝑛

(𝑆 ∙
𝑛′

𝑛
, 𝜏′), 

where the number of trials and the threshold number of outages are scaled by a common factor 
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𝑛′

𝑛
. If we set 𝜏′ = 𝜏, it follows that 𝐵𝑛′(𝑆′, 𝜏′) < 𝐵𝑛(𝑆, 𝜏) and hence that 𝑅 > 1. In other words, if 

the probability of outage for any given firm is the same across the two scenarios, then the 

probability of simultaneous outage of 𝑆 firms is greater in the cloud scenario. If we decrease 𝜏′  

continuously, 𝐵𝑛′(𝑆′, 𝜏′) will increase continuously, with 𝐵𝑛′(𝑆′, 0) = 1. Propositon 2 follows. 

Proposition 2: There is a unique outage probability 𝝉′ < 𝝉 for cloud providers that yields 

an odds ratio of 1, i.e. the probability that at least 𝑺 firms are out is equalized across the 

no-cloud and cloud scenarios. The odds ratio is strictly increasing in 𝝉′. 

3.5 A stylized numerical example 

For concreteness, let us consider 20 firms and assume that in scenario 2 we have 5 CSPs with 

4 firms each as clients. As the purpose at this stage is simply to illustrate the properties of the 

model, we set parameters such that the risks are relatively large.7 

Table 1: Parameter values in stylized example 

Parameter Interpretation Value 

𝑛 Number of firms 20 

𝑛′ Number of CSPs 5 

𝑆 
Minimum number of firms in 

simultaneous outage for systemic event 
4 

𝜆 
Per-period probability of new outage in 

no-cloud baseline 
5% 

𝜇 
Per-period probability that an outage is 

resolved in no-cloud baseline 
45% 

𝜆′ 
Per-period probability of new outage in 

cloud scenario 
1.6% 

𝜇′ 
Per-period probability that an outage is 

resolved in cloud scenario 
78% 

 

We obtain the average time spent in outage in the baseline scenario: 

𝜏 =
𝜆

𝜆 + 𝜇
= 10% (12) 

The average time a firm spends in outage in the cloud scenario is:  

𝜏′ =
𝜆′

𝜆′ + 𝜇′
= 2.0% (13) 

In this example, a firm in the baseline scenario would spend around five times as long in outage 

compared with if it outsourced to the cloud. 

The probability of a systemic event in the no-cloud baseline is given by: 

 
7 We do not interpret time periods here but note that the incident frequency estimates would be unrealistically high if we were 
working on the basis of hourly periods as in the application of section 3. Conversely, those estimates would be more realistic if were 
we suppose a single time period to be an appropriately long interval (e.g. days or weeks, depending on the application), but the 
assumed recovery parameters 𝜇 would then be unrealistically low. The aim of the stylized model is to aid intuition; a more realistic 
calibration is provided in section 3. 
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Prob[𝑚(𝑡) ≥ 4] = 1 − Prob[𝑚(𝑡) ≤ 2] = 1 − ∑ (
20
𝑖

) 0.1𝑖

3

𝑖=0

 (1 − 0.1)20−𝑖  

=  13.3% (14)

 

The probability of a systemic event under the cloud scenario is given by: 

Prob[𝑚(𝑡) ≥ 4] = 1 − Prob[𝑚(𝑡) ≤ 3] = 1 −  (1 − 0.02)5  

=  9.7% (15)
 

In this stylized example, the improved resilience of the cloud provider – echoed in the inequality 

𝜏′ < 𝜏 – more than compensates the concentration risk brought by the cloud outsourcing model. 

What is the approximate threshold value 𝜏′ such that 𝑅 = 1, fixing 𝜏 = 10% ? 

Solving numerically yields that if we set 𝜏′ = 2.8%,  

Prob[𝑚(𝑡) ≥ 3] = 1 − Prob[𝑚(𝑡) ≤ 2] = 1 −  (1 − 0.035𝑖)
4

  

=  13.3% (16)
 

➢ Remark: Any values for the underlying parameters 𝜆′, 𝜇′ such that 
𝜆′

𝜆′+𝜇′ = 2.8% are 

consistent with this result. Chart 4 illustrates regions of parameter values for which systemic 

risk is higher in the cloud scenario than the no-cloud scenario, and vice versa. The solution 

relies on the specification that a systemic event occurs whenever there is a simultaneous 

outage. Note that the scale for 𝜇′ (horizontal axis) is around two orders of magnitude larger 

than that for 𝜆′. This is to be expected, since doubling the repair rate will only approximately 

double the among of time in outage if the incident rate is small. 

 

Chart 4  
Values of cloud incident rate (𝜆′) and cloud repair rate (𝜇′) that equalize systemic risk with baseline in 
stylized example 

 
 

Note: The line plots values of cloud incident rate 𝜆′ and cloud repair rate 𝜇′ for which 𝜏′(𝜆′′, 𝜇′) = 2.8%. In the 

region above the line,  𝜏′> 2.8%. Assuming 𝜏′= 10% in the no-cloud scenario, the odds ratio R > 1 in this region, 

i.e. the probability of simultaneous outage of at least 4 firms is greater when outsourcing takes place in the no-

cloud baseline. 
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3.6 Minimum-time conditions 

If instead we assume that a systemic event requires simultaneous outage among at least 𝑆 of 

the same firms in two or more consecutive time periods, then the cloud recovery rate μ′ plays a 

new role in determining systemic events. Specifically, we define: 

𝑚2(𝑡) ≔ |{𝑖: 𝜔𝑖(𝑡) = 1 ∩ 𝜔𝑖(𝑡 − 1) = 1}|     (17) 

The quantity, 𝑚2(𝑡) is the number of firms that have been in outage for at least 2 periods. Now: 

Prob[𝑆𝑦𝑠𝑡𝑒𝑚𝑖𝑐 𝑒𝑣𝑒𝑛𝑡 𝑎𝑡 𝑡] =  Prob[𝑚2(𝑡) ≥ 𝑆] (18) 

To evaluate this expression, first recall that in the no-cloud model, a firm remains in outage from 

one period to the next with probability (1 − 𝜇). Outage length therefore follows a geometric 

distribution. The cumulative density function for total outage length is as follows:8 

𝐹(𝑡) = 𝜇 ∑(1 − 𝜇)𝑣−1

𝑡

𝜈=1

= 1 − (1 − 𝜇)𝜈 (19) 

Consequently, conditional on observing that a firm is out during a given period, the probability 
that the outage is in at least its second period is 1 − 𝐹(1) = (1 − 𝜇), which is simply the 
probability of remaining in outage from one period to the next. Hence: 

Prob[𝑚2(𝑡) ≥ 𝑆] = 1 − Prob[𝑚2(𝑡) ≥ 𝑆] = 1 − 𝐵𝑛(𝑆, (1 − 𝜇)𝜏) (20) 

Let 𝑚𝑘(𝑡) be defined analogously with equation (17) to be the number of firms in outage for at 

least 𝑘 consecutive periods: 

𝑚𝑘(𝑡) ≔ |{𝑖: 𝜔𝑖(𝑡) = 1 ∩ 𝜔𝑖(𝑡 − 1) = 1 ∩ … ∩  𝜔𝑖(𝑡 − 𝑘)}|     (21) 

Conditional on observing that a firm is out during a given period, the probability that the outage 

is in at least its 𝑘th period is 1 − 𝐹(𝑘 − 1) = (1 − 𝜇)𝑘−1. If we assume that a systemic event 

requires simultaneous outage in 𝑘 or more consecutive time periods, applying the formula for 

𝐹(𝑡) yields the following expression for the no-cloud model: 

Prob[𝑚𝑘(𝑡) ≥ 𝑆] = 1 − 𝐵𝑛(𝑆, (1 − 𝜇)𝑘−1𝜏)  (22) 

We can extend the simple illustrative example of section 3.5 to include minimum-time conditions 

for a systemic event. Suppose first that a systemic event requires the same four (or more) firms 

to be in outage for two consecutive periods. In this case, using the same parameters as before, 

we have that (1 − 𝜇)𝜏 = 55% × 10% = 5.5%, while (1 − 𝜇′)𝜏′ = 22% × 2% ≅ 0.44%. 

The probability of a systemic event in the no-cloud baseline is now: 

Prob[𝑚2(𝑡) ≥ 4] = 1 − Prob[𝑚2(𝑡) ≤ 3] = 1 − ∑ (
20
𝑖

) 0.055𝑖

3

𝑖=0

 (1 − 0.055𝑖)
20−𝑖

  

                  =  2.2% (23)

 

The probability of a systemic event under the cloud scenario is given by: 

 
8 𝐹(𝑡) ≔ 𝑃𝑟𝑜𝑏(𝑠 ≤ 𝑡), where 𝑡 = 1, 2, …. is a given time period and 𝑠 is the period at which a given outage finishes. The expression 
for the cloud scenario is closely analogous and so is omitted for brevity. 
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Prob[𝑚2(𝑡) ≥ 4] = 1 − Prob[𝑚2(𝑡) ≤ 3] = 1 −  (1 − 0.0055𝑖)
4

  

=  2.2% (24)
 

In contrast to the previous case, where the probability of being in cloud outage (at any given 

time period) of 𝜏′ = 2.8% was needed to equalize systemic risk across the two scenarios, a 

lower cloud outage probability of 𝜏′ = 2% now equalizes the values given the incident rate and 

repair rates. However, now that systemic events require consecutive outages, this value of 𝜏′ is 

not a unique solution, as the systemic outage probability is no longer only a function of 𝜏′. Chart 

5 plots the solutions to (1 − 𝜇′) (
𝜆′

𝜆′+𝜇′) =  0.44%, which equalizes the systemic risk rates 

between the two scenarios. 

 

Chart 5  
Values of cloud incident rate (𝜆′) and cloud repair rate (𝜇′) that equalize systemic event risk with 
baseline in stylized example (2-period threshold) 

Note: The line plots values of cloud incident rate 𝜆′ and cloud repair rate 𝜇′ that equalize systemic outage 

probabilities between the no-cloud and cloud scenarios in the stylized application. Assuming that 𝜏 = 10% in the 
no-cloud scenario, the odds ratio R > 1 in the region above this line, i.e. the probability of simultaneous outage 
of at least 4 firms for at least 2 periods is greater when outsourcing takes place in the no-cloud baseline. The y-
axis is truncated at 𝜆′ = 10% for clarity. 

At high values of the cloud repair rate, there is a steep relation between the values of 𝜆′ and 𝜇′ 

that equalize systemic risk across the two scenarios, since in this region cloud outages become 

likely to be repaired within a single period. 

General relation between 𝜆′ and 𝜇′ under minimum time conditions 

To develop intuition on the role of the minimum-time condition in determining systemic risk, we 

now consider the more general case where a systemic event requires the same 𝑆 firms to be in 

outage for 𝑘 ≥ 1 consecutive periods. The odds ratio 𝑅 = 1 whenever: 

Prob[𝑚𝑘(𝑡) ≥ 𝑆 | 𝐶𝑙𝑜𝑢𝑑] = Prob[𝑚𝑘(𝑡) ≥ 𝑆 | 𝑁𝑜 𝑐𝑙𝑜𝑢𝑑] (25) 

First let us denote A ≔ Prob[𝑚𝑘(𝑡) ≥ 𝑆 | 𝑁𝑜 𝑐𝑙𝑜𝑢𝑑] to be the probability of a systemic event in 

the no-cloud baseline. 
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Then define 𝐵 to be the probability that a single cloud provider has been in outage for at least 𝑘 

periods, i.e. that a systemic event takes place in the cloud scenario. 𝑅 = 1 then implies that: 

1 − (1 − 𝐵)𝑛′
= 𝐴 (26) 

i.e. 

𝐵 = 1 − (1 − 𝐴)
1

𝑛′  (27) 

By analogy with equation (21), we know B also satisfies: 

𝐵 = (1 − 𝜇′)𝑘−1𝜏′ =
(1 − 𝜇′)𝑘−1𝜆′

𝜆′ + 𝜇′
(28) 

which rearranges to:  

 

𝜆′𝐵 = (1 − 𝜇′)𝑘−1𝜆′ − 𝐵𝜇′ (29) 

 

i.e. 

𝜆′ =
𝐵𝜇′

(1 − 𝜇′)𝑘−1 − 𝐵
 (30) 

for 𝜆′ ∈ (0,1].  

This functional form imposes strong convexity for high 𝑘, meaning that progressive 

improvements in 𝜇′ allow for larger increases in 𝜆′ under the constraint of equal systemic risk 

across scenarios (𝑅 = 1). In general, for sufficiently high 𝜇′, equation (29) cannot be satisfied 

for 𝜆′ < 1. In other words, if the CSP has a high enough repair rate, even very frequent outages 

will not create additional systemic risk, because they will be immediately resolved. 

For further concrete illustration of this relationship, suppose that a systemic event requires the 

same four (or more) firms to be in outage for three consecutive periods.  

Using the same parameters as before, we have that (1 − 𝜇)2𝜏 = 55% × 55% × 10% = 3.025%, 

while (1 − 𝜇′)𝜏′ = 22% × 2.5% = 0.121%. 

Systemic risk in the no-cloud baseline is given by: 

Prob[𝑚3(𝑡) ≥ 4| 𝑁𝑜 𝑐𝑙𝑜𝑢𝑑] = 0.28%  (31) 

while in the cloud scenario, it is: 

Prob[𝑚3(𝑡) ≥ 4| 𝐶𝑙𝑜𝑢𝑑] = 0.48% (32) 

The solutions of (𝜆′, 𝜇′) that yield 𝑅 = 1 are even more strongly convex than in the previous 

case, as shown in Chart 6. 
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Chart 6  
Values of cloud incident rate (𝜆′) and cloud repair rate (𝜇′) that equalize systemic event risk with 
baseline in stylized example (3-period threshold) 

 
 

Note: The line plots values of cloud incident rate 𝜆′ and cloud repair rate 𝜇′ that equalize systemic outage 

probabilities between the no-cloud and cloud scenarios in the stylized application. Assuming that 𝜏′ = 10% in the 
no-cloud scenario, the odds ratio R > 1 in the region above the line, i.e. the probability of simultaneous outage 
of at least 4 firms for at least 3 periods is greater when outsourcing takes place in the no-cloud baseline. The y-

axis is truncated at 𝜆′ = 10% for clarity. 

 

4 Application of the model to a network of clearing members 

4.1 Motivation 

Systemic risk can arise if a large number of financial institutions become dependent on one or 

few third party providers (FSB, 2020). A major disruption of those providers could result in a 

single point of failure for the entire financial system. A range of financial institutions and 

infrastructures, which are critical to the function of the financial system could be considered 

exposed to this risk: payment and settlement systems (Eisenbach, Kovner and Lee, 2020), 

trading platforms or Global Systemically Important Banks, for example. Within financial market 

infrastructures, the clearing members that allow Centralized Counterparties (CCPs) to function 

constitute a possible real-world application of our model. 

CCPs are key financial market infrastructures that clear transactions between market 

participants. Such clearing services rely on clearing members – firms that directly clear the 

transactions facilitated by CCPs. This arrangement is designed to reduce counterparty risk in 

the financial system, and the move to central clearing for some class of derivatives was one of 

the key reforms introduced after the Global Financial Crisis. CCPs and their clearing members 

tend to specialize in the clearing of specific instruments (e.g., interest rate derivatives or CDS), 

resulting in a concentrated landscape with a few dominant CCPs (see Chart 7Error! Reference 

source not found.). Clearing members’ transactions also tend to be concentrated, with a small 

number of large institutions accounting for most of the activity (ESMA, 2020b; see Chart 8). 
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Chart 7  Chart 8  

CCP market landscape Clearing members’ transactions landscape 
High concentration in CCP market High concentration of collateral among 

clearing members of example CCP 

 

 

Note: Share of total collateral posted at Eurex by 

different groups of clearing members. 'Top 10' = 

share of collateral posted by 10 clearing members 

with largest amounts of collateral posted. 'Others' = 

share of collateral posted by all other clearing 

members (n=114) 

Sources: Eurex, ESMA. 

Note: Market share of CCPs for selected interest rate 

derivatives in percentages of single sided gross nationals, 

as of December 2020. Sources: Clarus, ESMA. 

Sources: IOSCO – CPMI Quantitative Disclosures, ESMA. 

 

In that context, the network of CCP clearing members offers a tractable application of the model 

outlined in the previous section. In particular, we consider the risk that of one or several clearing 

members are unable to clear transactions due to an outage in a CSP on which they rely9.  

We focus on of the risk of operational outages for clearing members, rather than an outage of 

a CCP itself, for a range of reasons. One is that while financial sector entities in general – 

including clearing members – increasingly are turning to cloud migration strategies, CCPs 

themselves have indicated they intend to retain the relevant operations in-house. Another 

reason to focus on clearing members is that the resulting setting  fits naturally with the stylized 

model presented in section 2. In particular, the model is suited to studying the impact on the 

financial system of several institutions suffering an outage at the same time. In this way, the 

clearing members application offers a richer setting to analyse systemic risk across financial 

institutions, with CSPs representing a single point of failure (Danielsson and Macrae, 2019). 

If clearing members outsource core services, and one or more CSPs suffers an outage, the 

impact on the financial system could be substantial. First, the failure of some clearing members 

to post collateral would lead to the liquidation of their positions according to the default 

management rules used by CCPs, implying potential losses due to fire sales and the 

consumption of some of the resources in the default fund. In addition, outages affecting clearing 

members could prevent some of their clients from clearing transactions with them. This, in turn, 

could result in additional costs – either in the form of frictional costs incurring by clients switching 

to other clearing members (where possible) or, worse, the cancellation of transactions where 

clearing cannot be executed. In its 2020 stress test, ESMA estimates that the failure of the two 

 
9 The outage of a CSP could also impact CCP critical functions not related to clearing and settlement such as risk management 
and risk  monitoring. 

Top 10
55%

Others
45%

Note: Share of total collateral posted at LCE Europe by different groups of
clearing members. 'Top 10' = share of collateral posted at LCE Europe by 10
clearing members with largest amounts of collateral posted. 'Others' = share
of collateral posted by all other clearing members (n=114).

Sources: LCE Europe
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largest counterparties to a CCP could lead to losses of around EUR 1bn each for the two largest 

EU CCPs (ESMA, 2020). 

4.2 Data and calibration 

Frequency and duration of outages for clearing members 

To apply the model to the network of clearing members, the different parameters need to be 

calibrated. Calibration is particularly challenging due to the lack of public data on the frequency 

and duration of outages for clearing members. However, partial data are in fact available for 

CCPs themselves, which we use as a proxy. These partial data are sourced from the voluntary 

public quantitative disclosures set up by CPMI and IOSCO (CPMI-IOSCO, 2015). Our 

estimation assumes that in the no-cloud baseline, clearing members suffer outages as 

frequently and with the same average duration as CCPs. As noted above, we use CCP outage 

data as a proxy for clearing member outages given the lack of available data on outages among 

the clearing members themselves. However, the frequency and severity of clearing members 

outages might be different from CCPs due to a range of factors (use of different IT systems, 

intragroup exposures, different reliance on CSPs etc.). 

The quarterly disclosures include information on operational risk (Principle 17 of the CPMI-

IOSCO framework) such as the actual operational availability of the core system(s) over the 

previous twelve months and the total duration and number of failures affecting the core 

system(s) involved in clearing. We retrieve quarterly data for 10 CCPs over the 2016-2020 

periods. Chart 9 provides summary statistics. 

 

Chart 9  
Reported outages and average outage duration (in minutes) used as a 
proxy for outages of clearing members in the no-cloud baseline 

 
 

Note: Number of outages (trailing 12-month sum) and outage duration (in minutes, 
secondary axis) from 10 CCPs through the period 2016-2020. Observations that 
reported 0 outages during a period have been excluded from the analysis. CCP 
outage data are used as a proxy for outages  by clearing members in the model 
presented in this paper.  
Sources: IOSCO – CPMI Quantitative Disclosures from 10 CCPs : CME, DTCC, 
Eurex, ICC_CDS, IC NGX, ICUS_F&O, JSCC OTC-JGB, LCH.Clearnet.LTC, 
LCH.Clearnet.SA. 

 



ESMA Working Paper No 2, 2022 21 

 

 
 

Table 2: Outage data used to model clearing member outages 

Year 2016 2017 2018 2019 2020 All years 

Total outages 39 31 25 24 15 134 

Avg. outages per 
year per CCP  

3.9 3.1 2.5 2.4 1.5 2.7 

Avg. mean outage 
duration (hours) 

1.0 1.0 1.9 0.9 1.3 1.2 

 

Note: Outages are reported in the dataset on a 12-month rolling basis each quarter, so total outages per year are 

estimated using Q4 reported values by CCPs, for a given year. Average number of outages and mean outage 

duration (in minutes, secondary axis) from 10 CCPs (CME, DTCC, Eurex, ICC_CDS, ICE NGX, ICEU, ICUS_F&O, 

JSCC OTC-JGB, LCH.Clearnet.Ltd, LCH.Clearnet.SA) through the period 2016-2020. Observations that reported 

zero outages have been excluded from the analysis. Data reported by CCPs only include total outage time and 

number of outages; this implies that for periods for which there is more than one outage we can only infer the mean 

outage time. Distribution of outage times and other descriptive statistics such as standard deviation, maximum and 

minimum outage times cannot be inferred from the data provided. 

 

We use the reported number of outages and outage duration to set values for 𝜆 and 𝜇. Denoting 

total time in outage as X, total time in the observation period as T,10 and number of outages as 

N, we calculate the following: 

𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑢𝑡𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑓𝑖𝑟𝑚 =  
𝑇 −  𝑋

(
𝑁
𝑛)

  =  704 ℎ𝑜𝑢𝑟𝑠 (33) 

𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑜𝑢𝑡𝑎𝑔𝑒 =  
𝑋

𝑁
  =   1.2 ℎ𝑜𝑢𝑟𝑠 (34) 

It will be convenient to work in a basis of hours. Using equations (2) and (3) to estimate the 

values of mu and lambda in hours we obtain:  

𝜆 =  
1

𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑢𝑡𝑎𝑔𝑒𝑠 𝑖𝑛 ℎ𝑜𝑢𝑟𝑠
 =  0.14% 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟  (35) 

𝜇 =  
1

𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑛 𝑜𝑢𝑡𝑎𝑔𝑒 𝑖𝑛 ℎ𝑜𝑢𝑟𝑠
 =  83% 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 (36) 

 

Frequency and duration of outages for CSPs 

To apply the model to the CSP network, the different parameters need to be calibrated. 

Calibration in this context is made easier given that CSPs publicly disclose data on frequency 

and duration of outages. However, data are not reported in a consistent manner across CSPs. 

When looking at the three biggest cloud providers there are major differences on the amount 

and the quality of incident data published. Microsoft Azure only reports data after November 

2019 and does not distinguish between ‘outage’ and ‘disruption’. AWS only reports data of what 

they consider ‘major’ incidents, which amounts to a total of just 5 incidents since 2015. Google 

Cloud on the other hand, reports detailed service outage and disruption data since Q2 2015. 

 
10 We consider trading hours only. We assume there are 8 hours per trading day and 20 trading days in a given month, which 
implies a total of 60 trading days per quarter. This amounts to 480 trading hours per quarter, or equivalently 28,800 trading minutes. 
In our sample we have 18 quarters, which implies a total time of 518,400 minutes, or 8,640 hours (T = 8,640). 
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Based on this, to calibrate our model we use the outage data reported by Google Cloud, which 

is publicly available on their website. The disclosures include information on service outages 

and disruptions to Google Cloud services; we focus on the former, in keeping with the focus of 

this paper. Chart 10 provides summary statistics. 

Chart 10  
Average reported outages and average outage duration (in minutes) used 
as a proxy for outages of clearing members in the no-cloud baseline 

 
 

Note: Number of outages and average duration of outages reported by Google 
Cloud for 2016-2020. Sources: Google Cloud, ESMA. 

 

Table 3: CSP outage data 

 

Year 2016 2017 2018 2019 2020 All years 

Number of outages  14 15 24 18 6 77 

Number of outages 
per service per year 

0.9 0.9 1.5 1.1 0.4 0.96 

Avg. duration 
(minutes) 

99 298 116 507 250 250 

 

A challenge in calibrating the cloud scenario in the model is to decide which of the 16 different 

cloud services listed in the dataset CMs would rely on for transactions with CCPs, if they were 

to outsource to the cloud as described by our model. There is no clear-cut answer, as the 

different cloud services can be used in different ways and in various combinations for a given 

area of business activity. Reflecting this uncertainty, our estimate for 𝜆′ is based on a simple 

average outage frequency across all cloud services. 

Another major limitation is that our parameter estimates implicitly assume that if a CM were to 

rely on a particular cloud service, any outage reported as occurring with that service would 

directly affect the CM. In other words, the estimate does not consider the fact that some outages 

may be local, rather than global. This could severely bias upward our estimate for 𝜆′ in particular. 

Following the same estimation procedure as in the case of the CCP data above, we arrive at 

the following parameter estimates: 
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𝜆′ =   0.08% 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟  

𝜇′  = 24%   𝑝𝑒𝑟 ℎ𝑜𝑢𝑟  

Recalling from Proposition 1 that the average time a firm spends in outage 𝜏 can be expressed 

as 𝜏 =
𝜆

𝜆+𝜇
, we can compare between the two scenarios:11 

𝜏 = 0.17% 

𝜏′ = 0.34% 

In other words, under our calibration, when firms outsource their services to CSPs, their 

expected time in outage doubles.  

Calibration of the systemic cost of outages 

We define systemic events as outages that result in a substantial fraction of CMs being unable 

to operate. The intuition is that if large CMs or a multitude of smaller CMs are disrupted, then 

the CCP is unable to operate in an orderly manner since several counterparties would be unable 

to post and receive margins.  

More precisely, we define a systemic event to occur whenever at least 3 of the same CMs are 

simultaneously unable to operate for at least 8 hours. This requirement is stricter than the one 

used for CCP stress tests, where CCPs should be able to withstand the simultaneous default of 

their two largest CMs.  However, in our model and application we only focus on the number of 

firms suffering an outage irrespective of their size. Therefore, we counterbalance this effect by 

requiring 3 CMs to suffer an outage12. 

Regarding the duration of the outages, the Principles for Financial Market Infrastructures (FMIs) 

put forward by CPMI and IOSCO explicitly specify that FMIs should have a business continuity 

plan that ensure that critical IT systems are able to resume two hours after a disruptive event 

(CPMI-IOSCO, 2012). The analysis of section 3.3 first imposes a minimum-time condition of 2 

hours, i.e. defines a systemic event to occur whenever 3 firms are simultaneously in outage for 

at least 2 hours. 

The longer the duration of the outage, the higher the probability that the event will be systemic. 

Any event that prevents or impairs end-of-day settlement could then be considered systemic 

(Brauchle, Göbel and Seiler, 2020). Therefore, we also analyse what happens when we impose 

an 8-hour minimum for a simultaneous outage to count as systemic. This condition reflects the 

fact that clearing is on a T+1 basis, and 8 hours is the approximate length of a trading day. 

Finally, alongside both sets of results we examine the effect of relaxing the minimum-time 

condition, i.e. suppose that a systemic event simply occurs whenever at least 3 of the same 

CMs are simultaneously out. The resulting comparison of results gives insight into the role 

played by the recovery rate parameter 𝜇′ in mitigating systemic risk.  

4.3 Results 

Given the definition of systemic event in the present application, we wish to calculate  

 
11 Although the estimated value of 𝜏′ is only an approximation given assumptions in the estimation strategy and limited data 
availability, it is close to Google’s target of availability for zonal services of 𝜏′ = 0.1%. For more details on this availability target, 
see section 3.4.1. 

12 An extension of the model where systemic events are defined based on size could be analysed in future work. 



ESMA Working Paper No 2, 2022 24 

 

 
 

Prob[𝑚8(𝑡) ≥ 3 | 𝑁𝑜 𝑐𝑙𝑜𝑢𝑑] = 1 − Prob[𝑚8(𝑡) ≤ 2 | 𝑁𝑜 𝑐𝑙𝑜𝑢𝑑] = 1 − 𝐵𝑛(2, (1 − 𝜇)𝜏) 

and 

Prob[𝑚8(𝑡) ≥ 3 | 𝐶𝑙𝑜𝑢𝑑] = 1 − Prob[𝑚8(𝑡) ≤ 2 | 𝐶𝑙𝑜𝑢𝑑] = 1 − 𝐵𝑛(2, (1 − 𝜇′)7𝜏′) 

Using the parameter values for 𝜆, 𝜆′, 𝜇 and 𝜇′ estimated in section 4.2 yields the solutions for 

𝑅 = 1 plotted in Chart 11, under the specification that a systemic event requires the same 3 

firms to have a simultaneous outage for at least 2 hours. 

Chart 11  
Estimated incident and repair rate for cloud outsourcing compared with solutions for R = 1 using 
data-based calibration 

  
 

Note: The lines plot values of cloud incident rate 𝜆′ and cloud repair rate 𝜇′, expressed as per-hour quantities, 
for which systemic events have the same probability in the no-cloud baseline and the cloud scenario, given the 
parameter estimates for 𝜆 and 𝜇 based on CCP outage data. A systemic event occurs whenever the same 3 

firms are out simultaneously for at least 2 hours. The y-axis is truncated at 𝜆′ = 0.1% for clarity.  

 

The purpose of the analysis is not to provide accurate point estimates of the relative risk of 

systemic events between the two scenarios, given the limitations in the data discussed above 

and the stylized features of the model such as independence of outages across firms 

(Assumption 1) and the specification that an outage affecting 3 firms is the threshold for a 

systemic event. However, the results give a useful framework for further analysis. 

The precise parameter values of CSP outage probability 𝜆′ and recovery probability 𝜇′ that we 

infer from the available data (using the assumptions discussed in section 3.2) are approximate 

estimates only. Nonetheless, as order-of-magnitude estimates they appear to be plausible, in 

that they are close to the target values adopted by the CSP in question. Given that these 

plausible values of (𝜆′, 𝜇′) lie far above the risk-equalization (𝑅 = 1) lines, we conclude that 𝑅 >

1 in the present application. In other words, given the available data, our model suggests that 

outsourcing of core services by clearing members could create a new source of systemic risk, 

through simultaneous operational outages.  

Consequently, as financial sector firms adopt cloud outsourcing for core functions, policymakers 

should investigate the possibility that additional systemic risk arises. They may do this by: 
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- seeking and collecting more comprehensive data on outages by clearing members (and 

indeed CSPs), or by other firms for whom simultaneous outages may have systemic 

effects; and 

- investigating the extent to which the modelling assumptions hold in practice and 

adjusting the modelling accordingly 

Chart 11 indicates that in the most time time-critical applications – where one hour of 

simultaneous outage represents a systemic event – then there is a linear trade-off between the 

cloud incident rate and cloud repair rate in equalising risk with the no-cloud baseline. 

In plotting Chart 11, we have taken 2 hours to be the time threshold for a systemic event. 

However, it could be argued that the systemic effects of an outage are less time-critical than 

that. For instance, we could instead assume that CCP outages have systemic effects only after 

8 trading hours, given the T+1 clearing cycle. Using an 8-hour minimum makes the probability 

of a systemic event in the no-cloud baseline vanishingly small in our model for the parameter 

estimates based on CCP outage data.13 The implied probability of 𝜆′ for 𝑅 = 1 would accordingly 

be vanishingly small – in effect requiring CSPs to prevent outages with perfect reliability. 

In summary, where systemic events occur only after extended periods of simultaneous outages 

among firms, our modelling suggests that CSPs would need perfect service availability so as 

not to introduce additional systemic risk compared to the no-cloud baseline. Achieving equality 

of systemic risk with the no-cloud baseline (the 𝑅 = 1 line in Charts 10 and 11) is therefore 

effectively unattainable for CSPs in the case of an 8-hour minimum for systemic events. This 

finding illustrates certain limitations with the modelling, however: 

• Policymakers may wish to tolerate more than the level of vanishingly small risk implied 

by the no-cloud baseline, given other benefits of the cloud computing paradigm. 

• The no-cloud baseline risk is based on simplifying assumptions, as set out above. 

• The CCP outage data may not provide a true guide to firm-level outage duration. One 

issue is that the data report only total outage length per firm per quarter, rather than the 

length of each outage. This makes is hard to test the goodness-of-fit of the geometric 

decay implied by our modelling (as opposed to a fat-tailed distribution). In particular, the 

data do not identify the number of day-long outages among CCPs.  

One way to address these limitations is to consider the values of 𝜆′ and 𝜇′ that are required to 

achieve a less extreme mitigation of systemic risk, while retaining the 8-hour minimum for 

systemic events. To do this, Chart 12 plots the 𝑅 = 1 line while specifying that the repair rate in 

the no-cloud baseline is now equal to that implied by the CSP data. In other words, we now set 

𝜇 = 0.24, rather than 𝜇 = 0.83. Under this calibration, we have that 𝜏 = 0.59% > 𝜏′. In other 

words, moving to the cloud now reduces the expected time a firm spends in outage. This models 

an incentive for firms to outsource, as explored in an equilibrium framework in Annex 1. 

The hourly probability of systemic of a 3-firm outage in the no-cloud baseline is now of the order 

of 2 in 10,000, or roughly once every 2.5 years. Even with this more modest target for systemic 

risk, however, our model indicates that CSPs have a greater risk than the baseline of a 

simultaneous outage (whether for one hour or 8 hours). 

 
13 The hourly probability of a 3-firms outage would be around 2 in a million according to our model, based on the assumptions and 
calibration used, notably including Assumption 1 (independence of firm-level outages in the baseline). This implies it would happen 
less often than once a century. 
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Chart 12  
Estimated incident and repair rate for cloud outsourcing compared with solutions for R = 1 assuming 
higher baseline risk 

 
Note: The lines plot values of cloud incident rate 𝜆′ and cloud repair rate 𝜇′, expressed as per-hour quantities, for 
which systemic events have the same probability in the no-cloud baseline and the cloud scenario, given the 
parameter estimate for 𝜆 based on CCP outage data but a lower estimate of 𝜇=24% (equal to that inferred from 
CSP data). Systemic event occurs whenever the same 3 firms are out simultaneously for at least 8 hours. The y-
axis is truncated at 𝜆 = 0.1% for clarity. 

 

Chart 12 suggests that starting with the estimates of 𝜆′ and 𝜇′ from the CSP data, systemic risk 

(relating to simultaneous outages of several hours) will be most effectively addressed by 

improving the cloud repair rate 𝜇′. Doubling 𝜇′ will enable the systemic risk target to be met, 

while halving the incident rate 𝜆′ will not. If 𝜇′ is increased to around two-thirds, then a far higher 

outage frequency 𝜆′ can be tolerated without introducing systemic risk. Put simply, if cloud 

outages are almost always repaired within an hour or two, then even if they are relatively 

frequent, they will not introduce systemic risks that only emerge on a timescale of many hours. 

This qualitative result appears especially relevant from the perspective of policymaking and risk 

management. 

4.4 Mitigating risk through back-up: multi-cloud outsourcing 

A simple extension of the analysis examines the possibility that firms may have access to a 

backup cloud service – either from a different provider, or by the same provider such that the 

back-up version of a given service operates fully independently of the primary version (known 

as a ‘multi-cloud’ approach). The assumption of full independence is idealised, as in practice a 

single provider (or even separate providers) could be subject to a given cyberattack or financial 

crisis undermining their ability to do business, for instance. There may also be common, external 

dependencies among given infrastructures, for example via chain outsourcing. 
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Our focus is on a multi-cloud approach for a given core service, to address risk arising from 

concentration at system level, in contrast to a multi-cloud approach across services to address 

risk arising to the operations of a single firm from concentration within the firm.14  

This risk mitigation strategy is already offered to some extent by some CSPs by constructing 

separate groups of cloud computing resources designed to be largely independent of each 

other, often known as ‘zones’. Zones may be connected to each other within a geographical 

region. Services can be provided at regional level, meaning that even if one zone suffers an 

outage, the services are likely to remain in operation. For example, Google Cloud (2021) aims 

for each zone to achieve 99.9% availability (i.e. 𝜏′ = 0.1%) but aims for each region to achieve 

99.99% availability (i.e. 𝜏′ = 0.01%). 

We assume perfect portability in this scenario. This means that if one provider suffers an outage 

and a firm has a back-up provider, the service can switch frictionlessly between the two. In 

reality however, back-up strategies, especially those involving different cloud providers, may 

face major frictions, in contrast to our idealised model. In other words, cloud services may not 

be fully or instantly portable between different providers, for reasons including the different 

configurations and technological solutions used. The same considerations are likely to apply to 

a lesser extent when considering availability zones within a single provider.  

Another pertinent issue not modelled here is that multi-cloud solutions may have some impact 

on the recovery rate parameter 𝜇. 

General approach to modelling multi-cloud for a given core operation 

For simplicity, we consider the case of back-up via a different cloud provider. In the general 𝑛-

firm case, for any two providers A and B, A is primary provider to 
𝑛

𝑛′ firms and B is secondary 

provider to a share 
1

𝑛′−1
  of these firms. Likewise, A is secondary provider to 

1

𝑛′−1
×

𝑛

𝑛′ firms whose 

primary provider is B.  

The number of firms suffering an outage at any given time is then: 

𝑚(𝑡) =
𝑛

(𝑛′ − 1)𝑛′
∑ ∑ 𝜔𝑗(𝑡)

𝑛′−1

𝑗′≠𝑘

𝜔𝑗′(𝑡)

𝑛′

𝑗=1

(37) 

Remark: Given that 

∑ 𝜔𝑘′(𝑡) ≤

𝑛′−1

𝑘′≠𝑘

𝑛′ − 1 (38) 

it follows that 𝑚(𝑡) is never larger in scenario 3 than scenario 2. There are always fewer firms 

in outage under the back-up scenario than under the initial cloud scenario. 

Multi-cloud in the securities markets application 

Suppose that each of the 20 firms in the application of section 3.2 now uses a multi-cloud model 

– specifically, using a back-up service from a different provider to seamlessly enable them to 

carry out CM functions if their primary CSP suffers an outage. As set out below, a key feature 

 
14 ESMA (2020c) includes guidelines for firms to assess concentration risk both at firm level and at sectoral level, and for 
competent authorities to monitor such risks once they are identified. 
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of this new scenario is that a systemic event (again triggered when 3 firms suffer simultaneous 

outage) now requires simultaneous outage among two providers, rather than one.  

For simplicity, as in the general 𝑛-firm case we assume that providers’ clients are equally shared 

by the other firms. This implies that just as in the primary market, the 4 cloud providers have 

equal market shares in the market for back-up services. 

If just one cloud provider suffers an outage, then its client firms are instantly able to switch to 

the back-up service, and their operations are interrupted. If, two cloud providers suffer a 

simultaneous outage, then a third of the 5 client firms of each provider suffer an outage (since 

each is backs up one third of the market for the other firms), making a total of 
10

3
 firms. Since 

the threshold for a systemic outage is 𝑆 = 3, a systemic event now requires simultaneous 

outage by two cloud providers. 

Assuming a 2-hour minimum for systemic outage, the odds ratio of scenario 2 (cloud outsourcing 

without back-up) compared with the no-cloud baseline is 𝑅~103. In other words, systemic risk 

is around a thousand times higher in the presence of cloud outsourcing. 

In contrast, the odds ratio of scenario 3 (cloud outsourcing with back-up) is 𝑅~1, i.e. risk is 

reduced to around the level of the no-cloud baseline. 

In summary, if firms back up their cloud services, the odds ratio decreases by several orders of 

magnitude. A multi-cloud model is a successful mitigant in the stylized model, based on the 

parameter calibration examined. 

An important caveat to this result is that CSP outages are (like firm outages) assumed to be 

independent. Introducing positive correlation between CSP outages (stemming from example 

from common vulnerabilities) would weaken the effectiveness of a multi-cloud policy. 

Nonetheless, discussion with market participants suggests that CSPs are likely to have different 

cybersecurity strategies and measures, which limits the scope for common vulnerabilities from 

malicious actions. Additionally, the scope for common vulnerabilities to natural disasters is 

limited by geography, in a similar manner to Assumption 1 (independence of firm-level outages 

in the baseline). 

4.5 Possible model extensions 

There are several ways the model could be extended. However, as the precise results are 

dependent on the calibration, which is based on limited available data, at this stage we have 

restricted attention to studying a heavily stylized version, discussing key features of the results 

and dependencies between parameters. Further work is likely to be most fruitful if and when 

more comprehensive data become available. 

A key simplification in the model is that firms are equally important from a systemic risk 

perspective. Future work could relax this constraint. 

In the model, outage status follows a Markov chain, implying a geometric decay process for 

outages (where the constant per-period probability of outage resolution is 𝜇). This feature of the 

model simplifies the analysis considerably. However, there is some evidence that outage 

duration follows a fat-tailed distribution (Naldi, 2017).15 Further work could investigate this 

possibility through numerical simulations.  

 
15 This possibility is one reason we adjust downwards the baseline (in-house) repair rate μ in the analysis presented in Chart 12. 
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Another simplification is that systemic costs are assumed to be binary once a threshold number 

of firms suffer simultaneous outage. A natural alternative would be to consider a (weakly convex) 

systemic cost function, strictly increasing in the number of firms in outage. Our initial analysis of 

this problem is that such a cost function increases the odds ratio 𝑅.  

A related extension would be to examine in detail how changes in the assumed market structure 

change the systemic risk profile of cloud outsourcing. For example, the effect increasing market 

concentration by CSPs should, intuitively, increase systemic risk. To capture this effect properly, 

it is likely that we would need to relax the assumption that systemic costs are binary and 

introduce a systemic cost function strictly increasing in the number of firms in outage.16 

Finally, important simplifications in the model are Assumption 1 (independence of firm-level 

outages in the no-cloud baseline), and the assumption that CSP outages are likewise 

independent. Relaxing the former assumption would, other things equal, reduce the odds ratio 

𝑅, while relaxing the latter would increase it. Further work could study these relationships in 

greater detail. 

5 Conclusions 

In a stylized framework, we have shown that individual firms have an incentive to outsource 

some of their IT infrastructure to CSPs. However, due to concentration risk, the likelihood of 

simultaneous outages might increase, thereby leading to higher systemic risk for the financial 

system.  

We discuss several options that can be pursued to mitigate this risk. First, if CSPs are 

substantially more resilient than individual firms, systemic risk could decline as the additional 

resilience of using CSPs more than compensate concentration risk. Finally, multi-cloud 

solutions, where firms use one CSP and another one as backup – or alternatively, the successful 

provision of cloud services via independent groups of resources by the same provider – may 

significantly reduce systemic risk. This will only happen, however, if the different CSPs or groups 

of resources have low common vulnerabilities (i.e. can reasonably be treated as independent) 

and if the services in question are rapidly portable between them. In reality, the first of these 

assumptions (independence of CSP outages) may not hold in certain circumstances, especially 

within a single cloud provider, while the second assumption (back-up portability) may not hold 

especially for back-up strategies that use different providers. 

Our work also shows the need for detailed data on outages by financial institutions and CSPs. 

Having consistent data reported by firms and CSPs would allow a better calibration of the model 

and improve the assessment of trade-offs between different uses of CSPs by firms. 

Given the ubiquity of CSPs and continuing migration to use of their services – a trend 

accelerated by the COVID-19 pandemic – it is crucial for policymakers and market participants 

to assess benefits and risks of outsourcing to CSPs. An important example in the EU is the 

proposed Digital Operational Resilience Act that envisages a mandate for the European 

Supervisory Authorities, working with other authorities, to oversee third party providers of critical 

financial services to address related systemic risks (European Commission, 2020).  

 
16 In the presence of binary systemic cost, we can briefly consider the effect of decreasing the number of CSPs covering the market. 
Once a single CSP outage is enough to trigger a systemic event, then further decreasing the number of CSPs would in fact decrease 
systemic risk in the model. Unless the specification of a binary systemic cost is strongly motivated by a particular setting, a strictly 
increasing systemic cost function would be a better basis for investigating the relationship between market concentration and 
systemic risk. 
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Annex 1: Equilibrium where firms outsource but do not fully back up 

To complement our discussion of options to lower concentration risk, we present a simple 

equilibrium framework that (i) accounts for the existence of the market for cloud-based 

outsourcing and (ii) illustrates how, nonetheless, firms may not find it individually rational to back 

up their services, even if doing so would be optimal from a system-wide perspective. This 

suggests that policy intervention may be needed to correct a form of market failure. 

In this framework, firms each pay a fee to outsource cloud services to a single market-wide 

provider. This fee is paid in each period and equals 𝐾′ > 0 per unit of time.  

We also allow for the fact that cloud outsourcing saves costs of maintaining in-house services. 

To the extent that cloud services are scalable on demand, they may also reduce excess capacity 

costs, which are another form of in-house costs. Denote 𝐾 the sum of all in-house costs.  

While it is simplest to interpret 𝐾 and 𝐾′ as costs, they could alternatively be interpreted more 

holistically to reflect relative incentives that are not immediately financial in nature, e.g. the 

business or technological capabilities offered by cloud services versus in-house systems,  

Assumption 4: Firms are risk neutral and suffer individual costs due to outages equal to the total 

amount of time of the outage. 

Let 𝛿 ∈ (0,1) denote the common discount rate, so that firms discount future expected costs by 

a factor of 𝑒𝛿𝑡. Assumption 4 implies that it is ex-ante optimal for any given firm to outsource 

services to a cloud provider when the following inequality holds.1 

∫ (𝜏 + 𝐾)𝑒−𝛿𝑡
∞

𝑡=0

𝑑𝑡 ≥ ∫ (𝜏′ + 𝐾′)𝑒−𝛿𝑡
∞

𝑡=0

𝑑𝑡 (𝐴1) 

By inspection, this is true whenever the following inequality holds: 

𝐾 ≤ 𝜏 − 𝜏′ + 𝐾 (𝐴2) 

We suppose that the cloud provider is a price setter, selecting a value of 𝐾 to maximise total 

revenue. Firms then choose whether to pay the fee for the outsourced services. By symmetry, 

the cloud provider needs to select a price that all firms are willing to pay. Proposition 3 

characterises the resulting equilibrium. 

Proposition 3. In scenario 2, there exists a unique value of 𝑲′ in which firms and the cloud 

provider are in a (unique, subgame-perfect) Nash equilibrium:  𝑲′ = 𝝉 − 𝝉′ + 𝑲 

Proposition 3 implies that cloud migration is (weakly) optimal for each firm. The reason is that 

the cloud provider provides the outsourced services with less average outage time than the firm 

would be if the services were instead in-house.  

Among the right-hand side variables in the expression for 𝐾′ in Proposition 2, while 𝜏 and 𝐾𝑖𝑛 

are exogenous to the provider, the value of 𝜏′ can be reduced if the provider is able to reduce 

𝜆′ or increase 𝜇′ Intuitively, firms will pay a premium for service reliability. 

However, as discussed in section 2, a systemic cost may arise in section 2 if all firms suffer an 

outage simultaneously. For simplicity, assume that this cost is proportional to the number of 

firms in the market, so can be denoted. 𝑛𝐶𝑠𝑦𝑠𝑡𝑒𝑚, where 𝐶𝑠𝑦𝑠𝑡𝑒𝑚 > 0 is a constant. The systemic 

costs are binary in nature: if the number of firms suffering a simultaneous outage reaches some 

threshold 𝑆, then the systemic cost arises. 
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We assume that 𝐶𝑠𝑦𝑠𝑡𝑒𝑚 represents spill-over costs for firms. For example, if several firms suffer 

an outage, the impact on liquidity for all firms creates costs beyond those directly incurred by 

the firms subject to outage as they cease their business activities. As such, 𝐾𝑠𝑦𝑠𝑡𝑒𝑚 does not 

appear in the equation in Proposition 2. 

Scenario 2 is less efficient (more costly) than the baseline no-cloud scenario from a system-

wide perspective if the following inequality holds. 

𝑞𝑛𝐶𝑠𝑦𝑠𝑡𝑒𝑚 + 𝑛𝜏′ > 𝑝𝑛𝐶𝑠𝑦𝑠𝑡𝑒𝑚 + 𝑛𝜏 (𝐴3) 

where 𝑞 is the probability of systemic outage in scenario 2 and 𝑝 is the probability of systemic 

outage in scenario 1. Rearranging gives 

(𝑞−𝑝)𝐶𝑠𝑦𝑠𝑡𝑒𝑚 > 𝜏 − 𝜏′ (𝐴4) 

Proposition 3 showed that it is individually rational for all firms to outsource to the cloud, 

assuming a provider is available. The reason is that 𝜏 − 𝜏′ > 0, i.e. cloud providers offer a more 

secure and resilient service. The right-hand side of the inequality (A4) is therefore positive. 

Expected total net costs (excluding 𝐾′, which is a payment rather than an economic cost to the 

system) can nonetheless be higher in scenario 1 than scenario 2 if (i) the systemic cost 

parameter 𝐶𝑠𝑦𝑠𝑡𝑒𝑚 is large enough and (ii) cloud provision yields a large enough increase (𝑞 − 𝑝) 

in the probability of a mass outage (of at least 𝑆 firms) compared with the no-cloud case.  

Proposition 3 can be used to guide risk analysis in the context of large firms gaining market 

share in the cloud services sector, which is especially relevant given the market concentration 

highlighted above in section 2. Specifically, it relates to risks analysis around large providers 

serving critical financial sector firms). As a provider grows, we may expect its value of 𝜏′ to 

decrease due to economies of scale, thereby increasing the right-hand side of the inequality. 

However, at the same time the left-hand side of the inequality can also be expected to increase, 

as the firm’s value of 𝛼 will rise if it serves more of the population of firms. Consequently, the 

effect of a firm gaining market share is a priori ambiguous. 

We now turn to analysis of the impact of cloud outsourcing on expected system-wide net costs. 

Let 𝑞𝑚𝑢𝑙𝑡𝑖 < 𝑞 denote the probability of systemic outage in scenario 3.  

For firms seeking back-up, the marginal cost compared with scenario 2 is 𝐾′ (as opposed to 

𝐾′ − 𝐾, the marginal cost of entering scenario 2 versus scenario 1), assuming that the same 

price is offered to firms whether or not a cloud service is used as back-up. This would be 

necessitated by assuming for instance that CSPs provide their services at cost. 

Now suppose that 𝜏 < 2𝜏′, i.e. cloud-based outsourcing less than halves the average outage 

time of in-house provision. This is a sufficient condition for the marginal benefit individual 

marginal benefit to the firm from obtaining back-up to be less than 𝜏 − 𝜏′, the marginal individual 

benefit of seeking simple cloud (scenario 2) compared to in-house provision (scenario 1). 

Substituting these bounds on marginal costs and benefits into the equality in Proposition 3 yields 

𝜏 < 𝐾′ (𝐴5) 

i.e. the marginal benefit to a firm of obtaining back-up is less than the marginal cost, and hence 

firms choose not to back up their services.  

In conclusion, there exist parameter values for which scenario 2 is in equilibrium, but scenario 
3 is not.
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